기계학습 기반 IDS 보안이벤트 분류 모델의 정확도 및 신속도 향상을 위한 실용적 feature 추출 연구

Vol. 28, No. 2, pp. 385-395, 4월. 2018
10.13089/JKIISC.2018.28.2.385, Full Text:
Keywords: Network Security, IDS, False Alarm, Machine Learning, SVM
Abstract

인터넷의 성장과 함께 각종 취약점을 악용한 사이버 공격들이 지속적으로 증가하고 있다. 이러한 행위를 탐지하기위한 방안으로 침입탐지시스템(IDS; Intrusion Detection System)이 널리 사용되고 있지만, IDS에서 발생하는 많은 양의 오탐(정상통신을 공격행위로 잘못 탐지한 보안이벤트)은 여전히 해결되지 않은 문제로 남아있다. IDS오탐 문제를 해결하기 위한 방법으로 기계학습 알고리즘을 통한 자동분류 연구가 진행되고 있지만 실제 현장 적용을위해서는 정확도와 데이터 처리속도 향상을 위한 연구가 더 필요하다. 기계학습 기반 분류 모델은 다양한 요인에 의해서 그 성능이 결정된다. 최적의 feature를 선택하는 것은 모델의 분류 성능 및 정확성 향상에 크게 영향을 미치기 때문에 기계학습에서 매우 중요한 부분을 차지한다. 본 논문에서는 보안이벤트 분류 모델의 성능 향상을 위해 기존 연구에서 제안한 기본 feature에 추가로 10종의 신규 feature를 제안한다. 본 논문에서 제안하는 10종의 신규feature는 실제 보안관제센터 전문 인력의 노하우를 기반으로 고안된 것으로, 모델의 분류 성능을 향상시킬 뿐만아니라 단일 보안이벤트에서 직접 추출 가능하기 때문에 실시간 모델 구축도 가능하다. 본 논문에서는 실제 네트워크 환경에서 수집된 데이터를 기반으로 제안한 신규 feature들이 분류 모델 성능 향상에 미치는 영향을 검증하였으며, 그 결과, 신규 feature가 모델의 분류 정확도를 향상시키고 오탐지율을 낮춰주는 것을 확인할 수 있었다.

Statistics
Show / Hide Statistics

Statistics (Cumulative Counts from December 1st, 2017)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article
[IEEE Style]
I. Shin, J. Song, J. Choi and T. Kwon, "A Practical Feature Extraction for Improving Accuracy and Speed of IDS Alerts Classification Models Based on Machine Learning," Journal of The Korea Institute of Information Security and Cryptology, vol. 28, no. 2, pp. 385-395, 2018. DOI: 10.13089/JKIISC.2018.28.2.385.

[ACM Style]
Iksoo Shin, Jungsuk Song, Jangwon Choi, and Taewoong Kwon. 2018. A Practical Feature Extraction for Improving Accuracy and Speed of IDS Alerts Classification Models Based on Machine Learning. Journal of The Korea Institute of Information Security and Cryptology, 28, 2, (2018), 385-395. DOI: 10.13089/JKIISC.2018.28.2.385.